پیش بینی کم آبی ماهانه با استفاده از یک مدل استوکستیک و سیستم استنتاج فازی مبتنی بر شبکه تطبیقی
نویسندگان
چکیده
آگاهی از دبی جریان و پیش بینی آن به ویژه در مواقعی که رودخانه با کم آبی مواجه است امری ضروری در جهت مدیریت بهره برداری از رودخانه است. در این مقاله به منظور مدل سازی سری های زمانی تشکیل شده از کم آبی های ماهانه و پیش بینی مقدار و زمان وقوع کم آبی ها، از یک مدل استوکستیک متداول (مدل میانگین متحرک تجمعی خودبازگشت-arima) و یک مدل مبتنی بر هوش مصنوعی (سیستم استنتاج فازی مبتنی بر شبکه تطبیقی-anfis) استفاده شده و نتایج حاصل از دو روش با یکدیگر مقایسه شده است. مقدار عددی کم آبی در هر ماه برابر با حداقل مقدار میانگین متحرکهای یک، سه و هفت روزه دبی جریان در همان ماه در نظر گرفته شد ه و بدین ترتیب سه سری زمانی یک، سه و هفت روزه از کم آبی های ماهانه به دست آمده است. بررسی عملکرد دو مدل یاد شده با استفاده از آمار ثبت شده از دبی جریان در خروجی حوضه آبریز معرف ناورود در استان گیلان نشان داد که مدل arima عملکرد بهتری در پیش بینی کم آبی های یک، سه و هفت روزه دارد. علاوه بر این، نتایج این تحقیق نشان داد که هر دو مدل arima و anfis کم آبی های سه روزه را با خطای کمتری نسبت به کم آبی های یک و هفت روزه پیش بینی می کنند.
منابع مشابه
پیشبینی کمآبی ماهانه با استفاده از یک مدل استوکستیک و سیستم استنتاج فازی مبتنی بر شبکة تطبیقی
آگاهی از دبی جریان و پیشبینی آن به ویژه در مواقعی که رودخانه با کمآبی مواجه است امری ضروری در جهت مدیریت بهرهبرداری از رودخانه است. در این مقاله به منظور مدلسازی سریهای زمانی تشکیل شده از کمآبیهای ماهانه و پیشبینی مقدار و زمان وقوع کمآبیها، از یک مدل استوکستیک متداول (مدل میانگین متحرک تجمعی خودبازگشت-ARIMA) و یک مدل مبتنی بر هوش مصنوعی (سیستم استنتاج فازی مبتنی بر شبکة تطبیقی-ANF...
متن کاملطراحی مدل پیش بینی حجم ترافیک روزانه برون شهری با استفاده از سیستم استنتاج فازی مبتنی بر شبکه عصبی(ANFIS)
تقاضای روزافزون استفاده از وسایل حمل و نقل شخصی، مشکل تراکم ترافیک را به یکی از مهم ترین بحران ها در اکثر کلان شهرهای جهان تبدیل کرده است. تأثیرات زیست محیطی، اجتماعی و اقتصادی که گره های ترافیکی بر جوامع بشری می گذارد محققین را برآن داشته است که به دنبال راه کارهایی برای مقابله با آن باشند. یکی از این راه کارها پیش بینی حجم ترافیک روزانه است. پیش بینی ترافیک به کنترل کننده ها کمک می کند ت...
متن کاملپیش بینی جریان رودخانه با استفاده از سیستم استنتاج فازی
یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدلسازی سیستمهایی که دارای پیجیدگی زیاد یا عدم صراحت بوده و یا دادههای کافی از آنها موجود نیست، استفاده از تئوری مجموعههای فازی از جمله سیستم میباشد. مزیت اصلی این تکنیک نسبت به استنتاج فازی روشهای رایج، این است که این سیستم بر اساس قواعد اگر- آنگاه بنا نهاده شده است و قادر به تعیین ارتباط بین متغیرهای ورودی و خروجی با استفاده از قواعد مزبو...
متن کاملپیش بینی تبخیر- تعرق پتانسیل ماهانه با استفاده از مدلهای ماشین بردار پشتیبان، برنامهریزی ژنتیک و سیستم استنتاج عصبی – فازی
چکیده علیرغم اهمیت تبخیر-تعرق در برنامهریزی و مدیریت منابع آبی، وابستگی آن به مولفههای اقلیمی از یکسو و تاثیرپذیری این مولفهها از یکدیگر از سویی دیگر تخمین تبخیر-تعرق را دشوار ساخته است. به همین منظور، در این پژوهش، به بررسی امکان پیشبینی این مولفهی مهم در استان سیستان و بلوچستان با استفاده از مدلهای فراابتکاری از قبیل سیستم استنتاج عصبی – فازی، برن...
متن کاملپیش بینی جریان رودخانه با استفاده از سیستم استنتاج فازی
یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدل سازی سیستم هایی که دارای پیجیدگی زیاد یا عدم صراحت بوده و یا داده های کافی از آنها موجود نیست، استفاده از تئوری مجموعه های فازی از جمله سیستم می باشد. مزیت اصلی این تکنیک نسبت به استنتاج فازی روش های رایج، این است که این سیستم بر اساس قواعد اگر- آن گاه بنا نهاده شده است و قادر به تعیین ارتباط بین متغیرهای ورودی و خروجی با استفاده از قواعد مزبو...
متن کاملپیش بینی جریان رودخانه با استفاده از سامانه استنتاج فازی(FIS) وسامانه استنتاج فازی- عصبی تطبیقی(ANFIS)
این مقاله فاقد چکیده میباشد.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
تحقیقات منابع آب ایرانجلد ۵، شماره ۲، صفحات ۱۶-۲۶
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023